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Abs tract

The Born-von Karman model for a chain polymer crystal

previously studied by Stockmayer and Hecht is re-examined

using only analytic approximations rather than numerical methods*

The analytic approach brings out many peculiar properties of

the chain polymer model that did not appear in the numerical

treatment.

One branch of the frequency distribution g(v) is shown

to be proportional to v 2 for the smallest values of v, approxi-

mately proportional to v for slightly larger v, to v 1 "2 for

still larger v and to v- 1 / 2 in still a fourth range of small

values of v. An accurate graph of g(v) is constructed for the

entire range of frequencies using values of the force constants

suggested by Stockmayer and Hecht. g(v) is shown to have

approximate singularities of a type not anticipated by van Hove

in his broad treatment of singularities for general systems.

This anomalous behavior results from having strong valence

forces resisting the bending of bond angles. A classification

and description of various kinds of singularities that may

arise for systems with strong valence forces are given in an

appendix.
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1# Introduction

The specific heats of lamellar crystals have been the

subject of considerable study, both experimental and theoret-

ical2", in the last few years. Chain polymer or fibrous

crystals, on the other hand, have received much less attention

despite the fact that they should show anomalies at least as

interesting as those of the lamellar crystals.

Stockmayer and Hecht3 " considered a very simple rectangu-

lar lattice as a model for a hypothetical chain polymer system

and analyzed the spectrum using the numerical scheme of

Blackman. The model which they proposed is sufficiently simple,

however, that much of the analysis can be done analytically

instead of numerically with the result that certain features

of the spectrum and of the specific heat that were hidden in

the numerical treatment now become more apparent. It is the

purpose of the following to extend the analysis of this model

and to point out which of these features are representative,

at least qualitatively, of a whole class of chain polymer

arystals and which features are peculiar to this particular

model*

We shall use the same basic notation here as in S-H with

the following exception; since we shall be using at all times

the reduced force constants and frequencies denoted in S-H by

subscripts r, it is convenient to suppress this index. The

i, 01 x, v etc. used here shall be interpreted as the art Or'

Xr1 Vr etc. of S-H. The reader is referred to this paper not

'I
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only for the notation but for the discussion of the model and

the general formulation of the problem. We would like to point

out, however, certain significant features in this paper that

might otherwise pass unnoticed.

S-H apparently were the first to incorporate into the

Born-von Karman model a force constant for bending of valence

angles even though it has long been common practice to include

such forces in the analysis of the vibrations of complex mole-

cules. The existence of the force constant x particularly with

x >> a, y is of considerable consequence as will be shown below.

The combination of rectangular geometry and central

forces only between chains leads to the result that in Eq. (2.8)
of S-19 v2 (V2) depends only very weakly upon 2 for y << 1.

This situation also has a pronounced effect upon the spectrum

and is in some respects similar to the effect seen in the

analysis of the simple cubic crystals in which second nearest

neighbor forces are necessary to prevent the spectrum from

becoming essentially one dimensional in form. Any consequences

resulting from y << a are closely tied to the rectangular

geometry of the crystal and are not to be considered as typical

of all chain polymer crystals whereas the consequences of

>>ly probably are typical as are also those of 0 >> y

The peculiar effects of the rectangular geometry arise

here because for y = 0, the normal modes of the system decompose

into three brandks with the modes for any one branch involving

displacements of the particles only along one of the three

crystal axes, The modes associated with v are those with1it

!
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displacement vectors perpendicular to the chains, in the 1

direction. If y= 0, the forces resisting displacements in

the 1 direction for any given particle arise from the nearest

neighbors in the same chain and from the nearest neighbors

in those adjacent chains which lie in the 1, 3 plane through

this particle. The essential point is that for y = 0 there

is no coupling between the displacements of this particle in

the 1 direction with the displacements in the 1 direction by

particles in adjacent 1, 3 planes. Adjacent It 3 planes

vibrate independently in the 1 direction and so for this

branch with y= 0, the behavior of the system is really that

of a two dimensional array of chains rather than what might

be described as a typical three dimensional array. It is

this feature of the rectangular lattice which is responsible

for the very weak dependence of v2 on entioned above.1 o(P2menindaoe
Similar arguments apply to the branch represented2

by v2 9 except that the role of the 1 and 2 directions are inter-

changed. For the third branch, v2, the displacements are along

the chain. The dominant feature is the strong central force

between nearest neighbors in the chain. The nearest neighbor

interactions between chains do not appear in v because the cen-

tral forces between such neighbors act only perpendicular to the

chain. Any coupling between chains can arise only from the

second nearest neighbors and therefore is very weak. That the

coupling between chains is relatively weak would be typical of

A4
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most chain polymors because of the very strong central forces be-

tween adjacent particles in the chain as comparcd with the forces

between chains. However, if the geometry of the lattice were

such that nearest neighbors in adjacent chains did not lie in a

plane perpendicular to the direction of the chain then the

coupling betwoen chains would be proportional to the nearest

neighbor force constant (a) instead of the second nearest

neighbor force constant (y).

Our purpose here is to analyze specifically the model as

proposed by S-H but it is clear that the peculiar properties of

the rectangular lattice are closely connected with the choice

of y << a and that if y were not chosen small compared with at

the system would be more typical of chain polymer crystals in

general.

2* Vibration Spectrum.

The first problem to consider is that of analyzing the

vibration spectrum and the shape of the surfaces of constant

frequency in the wave number space (T19 q29 T3). From S-H

Eq. (2.8) we note that v2 and v2 differ only in that yi and 92

are interchanged. If we consider the entire range 0 < 'Pll

T27 qP3 < a, then the frequency spectra of the first two brandhes

are identical. The third branch is exactly the same as that of

a Cubic lattice which has already been considered in some detail.

The spectrum of the third branch is plotted in Fig. 5 for the

values of the force constants used by S-H. Only the spectzrJm

2of V, necds special consideration.
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The frequencies for this branch are given by S-H, Eq. 2.8

V = (a/2)(1 - cos yi) + y(2- co cos c2

- cos Ti cos 43) + K(1 -cos T3)2 ()

To analyze the shape of the surfaces of constant

frequency in the (qii 92' q3) space, we first inspect the

behavior for small v2, For v2 < y << 1, it is necessary that

the first and last terms of Eq. (1) be small, of order y or less

with y <<aK, This, in turn, requires that 9l and 93 both be

small and so we can expand in powers of yl and 93 to obtain

v- [(a/+) + (y/ 2 )(1 + cos C, )]c. + yCl _ cos 9

+ (y/2)92 + NM 4 for v< y)(2)
T3 (/)31

This includes all terms in the expansion that are necessary to

determine the qualitative behavior for 0 < v1 < y.
For sufficiently small 2 namely for v 22 << Y2/)x

it is clear that 92 must also be small and that

(y/2)92 >> (%/)9 so that we obtain (S-H, Eq. 3.4)

2 [(a/4) +y)2+ (y/2)y2 + (y/2)y for 0 < 2 «<2/4x

(3)

For this lowest range of vii the surfaces of constant v

are flat ellipses with axes vl[(a/4) + yJ]', v.(y/2) "i and

v1(y/2) "  in the 1, 2 and 3 directions respectively. The first

of these is much shorter than the other two for a >> y, see

Fig. 1. The fact that the surfaces are ellipoidal for sufficient-

ly small v is a feature characteristic of many three dimensional
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systems*

As v2 increases past y2/+x, 92 remains small compared

with one but the term comes into prominence and quickly
2x/4)93

-overpowers the term (y/2 because of the assumption x > > y

Whereas the 91 and 92 intercepts of the surfaces of constant V

continue to increase nearly proportional to v, the 93 intercept

increases at a slower rate approaching the limit (Vl)*(X/4) .

The surfaces become elongated in the 91 direction as shown in

Fig. 1 and we see that (S-H Eq. 3.6) except for the very small

values of Y3,

2 [(a/4+) + y32+ (y/2)P + (x/4i)94 for y 2/)+x <<V << Y~

(4)

This form of v2 reflects the influence of the strong valence

forces with a 9 dependence characterized by a fourth power

term rather than the more familiar quadradic dependence as in

Eq* 3.

As V12 approaches the value y, the expansion in powers

of (2 breaks down and we must go back to Eq. (2) which tells

us that for V2 = 2y, the surfaces of constant v pass through a

corner of the Brillouin zone at (0, , 0) creating a saddle

point such as discussed by van Hove5 ". The surface v2 = 2y

is one of the surfaces shown in Fig. 2. How;ever, we shall pass

over this critical range of v for the moment.

There follows another region of frequencies

y << V2 << a in which the y terms of Eq. (1) are of only minor

importance* As can be seen from Fig. 2, the surfaces of con-

stant frequency are nearly indopendent of q'2 (cylinders) with



Nonr 562-08 8

the y terms only causing a ripple in the surface. In this

range of vl, y3 is still small and except for the very smallest

values of T3,

V2_(a/2)(1 cos cp1) + (/)P4 for y'< v 2 < a
1 3 1

(5)
The extent to which such a range of frequencies exists

depends upon the validity of the condition a >> y. Such a

condition is a consequence of the rectangular geometry, not

simply of the fibrous structure.

V2 approaches the value a, the surfaces come close

to an edge of the Brillouin zone and the detailed shape near

this edge becomes sensitive to the y terms of Eq. 1. We shall

pass over this critical range also for the moment and consider

still larger values of vi.

For a << v2 << 4x2 the a terms of Eq. (1) as well as

the y terms become relatively unimportant but T3 is no longer

small* v2 is nearly independent of both (p and TO the surfaces

of constant vI are nearly planes with

v (l- Cos 4P) 2  for a << v 2 < 4X (6)

As v, approaches the value I+x2 the surfaces approach a

face of the zone and the dependence of v, on a and y once again

comes into prominence. Figure 2 shows some of these surfaces

of constant vp particularly those which pass near and through

critical points of the Brillouin zone. Because of the very

small value of y, some of the de .ils of the surfaces can not
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be shown on a figure of this scale particularly the behavior of

the surfaces passing near the two corners (, nt 0) and (nq 0 0).

The critical values of the frequency which were passed

over in the above description give rise to singularities in the

frequency distribution to be discussed in the next section.

These are associated with stationary values of vi considered as

a function of ql, 1 '2 and y3 and can be found analytically from

Eq. (1) by determining those values of (q1 1 q2, 3) and for

which v,0/8j = 1, 2, 3. These critical values are iisted

in Table I.

From the signs of the second derivatives, one also

determines whether any such point represents a maximum, minimum

or a saddle point of Vj. The saddle points are decomposed into

two categories denoted by S.PI and S.P.II. For S.P.I, the

surfaces of constant v are two sheeted for frequencies below

the critical frequency v. and one sheeted above the critical

frequency. S.P.II differs only in that the order is reversed;

the surfaces are two sheeted for frequencies above the critical

frequency and one sheeted below. This distinction shows up

in the frequency distribution g(v) in that for type I saddle

points there is a verticle tangent singularity as v--v a from

the left whereas for type II, the verticle tangent singularity

appears as v-4 v from the right.
C
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Table I, The critical points of the vibration spectrum for

vI are listed below. The first column gives the point

(.l q,2, 3) of the wave vector space and column two the

frequency at those points, The third column gives the type

of singularity* Max denotes local maximum, min, minimum

whereas S.P,I and S.P.II represent two types of saddle pointS

(Pl' 2' )  2V2 Type

(0, 0, 0) 0 min,
S(01 a, 0) 2y S.P.I

(RI cos'l(1 - y/2x)) a + 2Y- y2/x S.PII.

(n, at 0) a + 2 S.P.II

(I, 0, cos-l(l - y/2x)) a + 1 - Y2 / 4X S.P.II

(In, 0 , O) a + 4 max.

(0, 09r) x + 2T S.P.I

(0, , 7) 4X + 4Y SOP.II
(7R9 x + a Sp.II

(, 0,t) I + a + 2y max.

WOi



Noir 562-08 11

It is interesting to note that there are more than the

minimum number of critical points (10 instead of 8). In addi-

tion to the expected singularities at corners of the Brillouin

zone, there are also two saddle points at (x, 0, cos'1 (l-y/2x))

and at (n, 7E, cos-l(l - y/2x)). Furthermore the singularity

at the corner (n, O, 0) is a local maximum.

Two of these singularities lie very close to the corners

with 3 " (y/x)i << 1. The frequencies at these points are

extremely close to the corresponding frequencies at the corner,

the values of v2 differing by only y/+x- 0 5. Such details

are poorly resolved in Fig. 2 and do not appear at all in the

spectrum plotted in Fig. 4. The fact that there are two

singularities with frequencies very close together is of little

physical importance in itself; it is of interest here mainly

because we shall note in Sec. 4 that as the two sin~ularities

coalesce into one for y--O, a singularity in the distribution

of a slightly different type results.

3. The Freauency Distribution

In view of the complexity of the frequency spectrum

Eq. (1), there seems little hope of evaluating exactly the

frequency distribution function gl(v) of the first brandh from

the definition

gl(V) = 2v H dqdi 2 dp3  (7)
aC dv JJ

with the integral evaluated over the range
0 ,2(i '2 3 2

V1 Tl '?2 '?3
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and
O <Yi i 1, 2, 3

It is possible, however, to obtain quantitatively accurate

approximations to g1 (v) over certain ranges of v based upon

the approximations used in Eqs. (2) and (6).

By substituting Eq. (3) into Eq. (7), one finds very

easily that6

I - ' 1(a + 4y) -  4  for 0 < v2 << )-4x (8)

The quadratic dependence of gl(v) on v is typical of all three

dimensional systems and, as we shall see, gives the usual

Debye T3 -law for the specific heat. The distinguishing feature

of Eq. (8) is the fact that this relation holds only over a

very short range of v as compared with non-fibrous crystals.

From Eq. (4) we find that

gl (v) - 2n-2 Y'(a + YT)-*x-V3/2v3/2 for 214x << v 2 << Y

(9)

As noted also in Eq. (4), this form arises because at

these frequencies the valence forces have become the dominant

influence in the Y3 direction. The v3/2 dependence is a

feature that is expected to be more or less typical of chain

polymer crystals.

Actually by combining terms in Eq. (3) and (4), it is

possible to obtain an approximation valid over the entire range

0 < V2 << y for which the above are just limiting cases.
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91 (V) so 2j it(a + 4iy) 2*Y-V J(/) + 4+v2/x]i -/ y/*

for 0 < V2 << Y (10)

Equation (10) is plotted as the solid curve of Fig. 3 and the

two limiting equations, Eqs. (8), (9) are shown by the broken

lines, The range of frequencies involved here is very low and

the whole of Fig. 3 is a greatly magnified (about 40 to 1) view

of the small rectangle near the origin of Fig. 4,

2
If we pass over the. region around v = 2y for the moment

and go to slightly higher frequencies, we come to a range where

Eq. (5) holds. Despite its simple form, Eq. (5) does not yield

elementary Nntegrals, but leads to the form
Ipm

91 (v "2 j-f V 2 f (#l[v2 - a sin2((pl/2)]-3/4 (Ia
gl(v) -2* -a i (lla)

0
in which 9m is the value of 91 for which v2 = a sin 2(i/2).

If we let y = av-2sin 2 (yi/2), Eq. (lla) gives

g1 (v) .2" 7 2x (c + 2T) 4-V i0 dy yi(l - y)-3/+(i - v2y/a) "

(llb)

and if we restrict v2 so that v2 << a, the integral can be

evaluated in a power series in v2/a of which the leading term is

g1(v) 1 j'5/2--[r(l)12 for 2y << V2<< (% (12)

r is the gamma function which can also be expressed in terms

of complete elliptic integrals through the relation

]r(1 )]2 = 4 ri K(2-4).

We could also have obtained Eq. (12) 9 by restricting the



range of 9i in Eq. (5) and replacing cos 1I by 1 - cp /2.

The v 1 2 dependence results from having cylindrical wave

AI surfaces with one intercept proportional to V and the other

proportional to v and as noted in Eq. (5), this feature is

mainly due to the rectangular geometry. With a value of a/2y

of only about 10, the existence of a well defined frequency

range with 2y << v2 << a may be questioned even for the values

of the constants used here, If, however, we could make this

ratio appreciably larger such a range would certainly exist.

A plot of Eq. (12) is shown in Fig. 4 as one of the broken

lines. It is seen to give only a fair approximation over a

quite limited range and for these values of the constantst the

more accurate curve shown by the solid line would hardly be

recognized as being proportional to V1 /2.

If we consider next the region of still higher frequencies

where a << v2 < 4g, we can use Eq. (6) which again yields a

simple expression for gl(v)

g1 (v) - 2" n-lx4'[l - (V2/j+.K]-v"f for .a << V2 < jK+ (13)

which actually gives a fairly good approximation over most of

the range from a to 4x. This equation is not shown in Fig, 4

but the solid curve shown is obtained from a power series

expansion in(ca/) that converges quite rapidly over most of

this range. Equation (13) is the lowest term of this expansion.

It is interesting to note that from Eq. (13), we can

obtain another limiting form
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91(v) - 2itl%* v-f CEV for << V << (14)

Again for the choice of constants used here with 4x/a 10,

the existence of any such frequency range is questionable* A

plot of Eq, (14) is shown in Fig. 4 where one may see that this

approximation is not particularly good. The V-4 dependence

of g(v) does, however, represent a limiting situation in which

Lx/a > >1 and would indeed be recognized if we could make this

ratio appreciably larger than just 10,

This frequency dependence is not simply a result of

geometry, Similar results would also be obtained for x >> a, T

without any assumptions regarding the relative size of a and y.

It is a consequence of the choice of the valence forces as the

dominant influence for the modes vibrating perpendicular to the

chain and is likely to be typical of any chain polymer crystals.

It is worth noting perhaps at this time that some of the

approximations discussed so far work very well and others are

rather crude even though the assumption a/ 2y - 10 >> 1 and

4x/a - 10 >>1 seems quite reasonable. The reason for this is

that the errors are in some cases proportional to (2y/a)* or

(0/49) - I or even (a/l4x)*- .I- rather than (a/4.) - For
3 1.7

example, we may say that 93 is small in Eq. (5) when

V2 - a << x but actually 93 is of order (4z/x)i which really

is not very small; in fact it is very nearly 1. It is not

surprising then that the approximations in Fig. 4 are not

accurate to the order of 10% as might be expected from a hasty

judgment. Indeed such things as effective Debye temperatures
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and other qualitative measures of the sizes of physical con-

stants are really proportional to frequencies which in turn

are proportional to square roots of force constants rather than

the force constants themselves.

On the basis of the analysis so far, we see, however,

that for an extreme situation in which y << a << x, the frequency

distribution gl(v) varies as v2 at the lowest frequencies$

gradually changes over to a v312 dependence starting at V2 in

the vicinity of Y2 /4X later goes over to a v1/2 dependence

when v2 becomes larger than y and finally varies as v-* after

V2 becomes larger than a but still small compared with 4x The

effects of this on the specific heat will be shown in Sece 5.

The problem of actually constructing an accurate graph

of gl(v) for the entire range of v, is a rather tedious job.

For each of the frequency ranges considered above, the approxi-

mate formulae for gl(v) can be used as first approximations and

more accurate expressions obtained by expansions in powers of

y/av a/x (fractional powers in most cases) or whatever may be

appropriate, depending upon what has been neglected in Eq. (1),

to arrive at the lowest approximation. Such a procedure was

used to obtain the solid curve of Fig. 4 in the appropriate

ranges. The formulae and detailed procedures for this are

fai y straightforward and not sufficiently interesting to

warrant presentation here. Suffice it to note that this

procedure is not a satisfactory one for obtaining gl(v) near

its singularities where the expansions will converge very slowly

Ii
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if at all. The regions considered by this method are non-

overlapping and give little information regarding gl(v) for, v2

near the values 2y, a or Ix,

4. Sngular points

Van Hove 5* has described the analytic form of the singular

points for any quite general two or three dimensional crystalline

lattice. This description can indeed be applied to the present

problem but it really does not tell the whole story. Highly

anisotropic crystals, in general, and the present model in

particular with strong valence forces give rise to anomalous

behaviors near many of the singular points as illustrated, for

example, in Fig. 4 at the point v2 = a. This singularityl

though actually having a verticle tangent only on one side of

the singular pointg appears more like a true cusp with a verticle

tangent on both sides of the singularity.

We have already seen that the strong valence forces

cause unusual behavior near the origin, the minimum point of

the spectrum, which is in a certain sense one of the singu-

larities. Also we have seen that for v2 near a + 2y and also

for v2 near a + 4y, there are two singularities so close

together that it would be impossible to resolve-them on a scale

of frequencies such as that used in Fig. 1.,

Table I lists all the singular points. Br expansion of

v2 as given by Eq. (1) about the critical values of 19 92t '?3
one can easily deduce in accordance with van Hove that near any

critical frequency ve, except v a 0, g(v) has the general form
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g(v) a + b Real [ (v- v)] +0(V- v) (15)

The + sign inside the square root and the sign of b are

chosen in accordance with the four types of singularities as

listed in Table I, b is negative for S.P.I and S.P.II, positive

for max., and min. The + sign is chosen for S.P.II and min,

the - sign for S.P.I and max. The values of the constant b is

determined easily from values of the second derivative of v2

with respect to the 9's at the critical 91s. The value of

the constant a does not usually depend only upon the local

properties of v near the critical y's, however, and is not so

easily determined explicitly.

The origin v = 0 does not give a singularity in g(v)

but there is a vertical tangent singularity in

G(v 2 ) = (2v) g(v) (16)

the distribution of values of v2 . In place of Eq. (15) we

find for G(02 ) the analogous form

G(v 2 A + 3 Real ± (v2 - V) + (V2 v 2 (17)

c a

at every critical frequency v. including v = O.

The behavior of G(v2 ) near the origin indicates to a

certain extent the type and cause of anomalies in G(v2 ) and

g(v) at some of the other critical points.

From Eq. (8) and Eq. (16), we see that G(v2 ), considered

as a function of v2 starts out at v = 0 with



F

Nonr-62-08 19

G(V2 ) v = (V2)* for 0 < V2 << ' 2/ (18)

in agreement with the general form Eq, (17) with A ='0 (as

it must-be for an absolute minimum).

v2 has a complete range of order 1 whereas Eq. (18) holds

only for v2 << y2/1+x 1 0 - . This behavior is confined to

such a small range that it would not be resolved on any graph

showing the whole spectrum G(v 2 ) vs. V it did not even show

on the graph of g(v) vs. v which is relatively much more

sensitive to the behavior near V = 0.

As soon as the valence forces come into prominence with

the characteristic dependence of V2 on 94 g(V)c&/ 2 and

G(v2) V = (v2)* for y2«1x << V2 << 2y" (19)

The singularity has changed from a square root type to a fourth

root. Although this formula is also confined to a very small

scale of v2 values, v2 << 4 x 10-3, it is this feature which

is of particular interest for it is one of several possible

types of singularities that arise when v2 has a stationary value

with a local dependence upon the wave numbers that is quadratic

in some directions (91 and Y2) but primarily fourth power in

other directions (T3 ). This feature is characteristic of all

the singularities that lie on or near the face T3 = 0 in this

particular problem. It is a feature that is not peculiar to

this particular model but will arise in most any model having

strong valence forces with the characteristic fourth power

dependence of v2 on one or more of the wave numbers*
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The fourth root singularity is typical of any system

in which behaves locally as

2 a( 2 + b9 2(2+a(l -2c 2  + c(3 -(20)

in which v is a critical frequency, a, b, c are positive

constants and (l q2 3c) is a critical wave vector.

Because of the rectangular geometry and the fact that

this model degenerates into a two dimensional problem with

y -0V we have an illustration here of still another type of

singularity. Equation (5) for T, << 1 represents a two dimen-

sioanl form of Eq. (20), b = 0, and as we have already seen

g(V :.3/2 and

G(v2)4v " = (v 2 ) - * for 2y << v2 << a (21)

The negative fourth root singularity is typical of the two

dimensional form of Eq. (20).

On still a larger scale of v2, Eq. (6) with T3 << 1

reprosents a one dimensional form of Eq. (20) with a = b = 0

and g(v)(vk

~v 2)g;-3/2 - (v2)-3/1+ for a << << 4x (22)

The negative three-fourths powers singularity is representative

of the one dimensional form of a minimum having a fourth power

dependence of v2 on q3"

If now we go on to the singularity at v2 = 2y, we do

indeed see that in the immediate vicinity of (0t p 0), there is
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a Singularity of standard type (S.P.I) but since it is on the

face c3 = 0, the dependence of v on (p is to a large extent

dominated by the fourth power term. v2 behaves approximately

as given in Eq. (20) but with a negative value of b. We have

a "singular" type of saddle point.

On the scale with which Fig. 4 is drawn, only the behavior

typical of the singular type of saddle point can be shown. We

have included in the appendix a discussion of all the possible

types of singularities that might arise from valence forces.

It is shown there that this type of saddle point gives rise to

a fourth root verticle tangent singularity in g(v) on both

sides of vc (not necessarily symmetric about v., however).

This explains why g(v) appears to have a true cusp at v2 = 2y.

It has been possible to actually obtain, explicitly,

accurate analytic approximations for g(v) everywhere including

all the singular points. Unfortunately the derivation of these

expressions involves using slightly different techniques at

each of the singular points depending upon which of the many

variables involved in the integrations may be small for any

particular value of v. The results are not exactly trivial and

in most cases involve combinations of r-functions. It would

not be possible to describe all the various approximations here.

Mainly as an illustration of the form of a typical result we

give below an approximation for g(v) which is fairly accurate

in a small region near the point v2 = 2y

a
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[P0 r(/4+)] ** 4 Real +
2(a + 2y)*n 1 (2x)i [u/Li 2V

for 1O"3 - y/16 x <<I- 1 + v/ V/I <<1

This formula does not apply at the singular point

itself becauset strictly speaking, there is no verticle tangent

on both sids of the singularity but it would be necessary to

draw a graph that shows frequency differences of order

V y/16 x - 10-4 to see this.

The behavior near v2 - is even more unusual. Near

the point (,n, a$ 0), v2 a a + 2y, there are two singularities.

This results because near this point the dependence of v2 on I
f3 is represented by a negative but small (proportional to y)

quadratic term plus a positive but large (proportional to x)

fourth power term. As a function of q3' V2 has a minimum result-

ing from the competing influences of the quadratic and fourth

power terms. In addition to the stationary value of v2 at

93 = 0 there is a second stationary value a short distance away

from the corner. This anomaly is at least indicated in Fig. 2

but the double singularity cannot be resolved in Fig. 4. Figure

4 shows only the influence of the fourth power T3 terms but not

the quadratic terms. Disregarding this fine structure, the

behavior of v2 is described by an equation of the type Bq. (20.)

with a < 0 and b, c > 0. This gives another singular saddle

point of exactly the same type as at v2 = 2y with approximately

verticle tangents for g(v) on both sides of the point

V2 = a + 2,r
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At the point (n, 0, 0), V2 - a + 4yj we have a similar

situation with a pair of singular points due to the same sort

of dependence of v2 on q3" The exact picture is somewhat more

complicated than at the point (n, t, 0) because of the creation

at the corner of a local maximum and an "island" by the saddle

point a short distance away from the corner. Figure 4 is, how-

ever, again drawn on too coarse a scale to show this and near

this corner the frequencies are given approximately by Eq. (20)

with a, b < 0 and c > 0. Although this is also a singular

saddle point, it is not of the same type as those at v = 2y

and v= a + 2y by virtue of the fact that both quadratic terms

(a and b) are negative at v2 = a + 4Y whereas at the other two

frequencies only one of these terms is negative$ It is shown

in the appendix that this new type of saddle point gives rise

to an infinite discontinuity in slope with a finite slope on

one side (in this case the low frequency side of v c ) and a

vertical tangent on the other side. In this respect it is the

same sort of behavior as obtained from a saddle point of stand-

ard type but the verticle tangent arises in the present instance

from a fourth root rather than a square root singularity.

The fact that for y < < 1 all singular points at

V2 = a + 2y and V2 = a + 4y lie very close together indicates

that on a coarse scale of frequencies in which frequency differ-

ences of order y are not resolved, the g(v) curve has an

approximate singularity of still anotker kind In the vicinity
of = a This is, of course, due to the fact that for
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y -- 0, the problem reduces to a two dimensional problem and

as a two dimensional problem, the surfaces of constant v are

all cylinders independent of 92 with the line I(, 2' 0) a

line of singularities,

The form of the surfaces of constant frequency is

represented approximately by Eq. (20) with b = 0,'a < 0 c > 0,

a singular form of a two dimensional saddle point. In the

appendix it is shown that this gives rise to an infinite singu-

larity of the type

Vc -04 for v > v

g ) C Real (v c  - v) -  = { ( V v ) for v V

Although gl(v) has a minus one fourth power singularity

on both sides of V c g1(v) is not symmetric about vc* Figure

4 clearly shows the tendency to approximate this two dimensional

behavior for 2 _ a•

The remaJ/.jg singularities of the spectrum all occur

on the face T3 = R and are of a more conventional variety

although we can again see the effects of having a spectrum that

on a very coarse scale tries to approximate a one dimensional

spectrum, on a finer scale a two dimensional spectrum and

finally the three dimensional spectrum on a still finer scale*

We no longer have a local fourth power dependence of v2 on the

wave numbers near singularities as is true on the face T3 = 0.

The curve clearly shows the usual varieties of verticle

tangent singularities characteristic of any three dimensional
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system at the four points v2=4x + 2'y 4x + 4y$ 4 + a and

1x + a + 2Y which arise from the stationary values of v2 at

the four corners of the cube on the faces 3 On a scale

in which frequency differences of order y are not resolved, the

singularities coalesce in pairs at the approximate points

v2 = 4x and v2 = 4x + a, In this approximation the spectrum

is two dimensional with the usual two dimensional singularities,

a logarithmic singularity at v2 =4x coming from the edge

(0) (2 n ) of Fig, 2 and a discontinuity at the maximum frequency

4+x + a coming from the edge (a, n2  ) 7 of Fig. 2. This tendency

of Fig, 4 to approximate this behavior is clearly indicated.

On a still coarser scale of frequency, all four

singularities occur at approximately the same frequency,

2 - 4x and the spectrum approximates that of a one dimensional

system with the characteristic recriprocal square root singular-

ity in g(v) due to the maximum on the face of the cube

(T 1 2' T ). This tendency is illustrated in Fig. 4 by the fact

that gl(v) rises quite rapidly as V--x on a coarse scale of

frequency.

The fact that it is possible actually to construct a

fairly accurate curve for gl(v) throughout the whole range of

v is to a large extent a consequence of the fact that the,

spectrum is really a distortion of a one dimensional spectrum

into a two dimensional spectrum and then a distortion of the

two dimensional spectrum into a three dimensional spectrum@

No attempt has been made to analyze carefully the size



Nonr 562-08 26

of the errors made in the calculation of gl(v) but the errors

of Fig. 4 exceed a few percent only at a few places at most,

The curve is at least as accurate as we believed anyone would

ever care to know it.

5. The Complete Spectrum

As noted in Sec. 2, the total spectrum consists of three

branches of which the first two are identical and have been

described in the previous sections. The third branch is the

same as that of a simple cubic lattice and Fig. 5 is drawn

using the formulae given in Ref. 4. We wish merely to point

out a few features of this spectrum that were not noted there.

The spectrum is approximately one dimensional and in

contrast with the somewhat artificial application intended in

Ref. 41 this appears to be a fairly realistic feature of the

fibrous crystals although this is perhaps exaggerated by makIng

yp- 2 x lO-3.

g(v) starts at v 0 with the characteristic v2

g3
dependence

g3(v) 21' 21"1 (p + 4Y)-v 2,Zv2  for v2 << 2y (23)

There are singularities at Y = 2Y and 4Y but as V2 becomes

larger g(v) becomes almost equal to the one dimensional spectrum

for which g3 (v) is a constant at low frequencies

2 2 « 2fg3(v) VO for 4y < v << 1 (24)

These two limiting forms are shown in Fig. ~by the broken line.
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The fact that y/P is so small makes these quantitatively

accurate in contrast with some of the less accurate limiting

forms for gl(v).,

At the high frequency end of the spectrum g3 (v) tries

to become infinite as its approximate one dimensional form

requires. The three dimensional form requires that g(v) remain

finite as indeed the magnified view of this end of the spectrum

shows in Fig. 5.

The complete spectrum of the system is the sum of the

three branches
g (v) = [2g, (v) + g3 (v) J/3

Fig. 6 shows the resulting distribution by the solid curve.

The broken line step function is the numerical graph obtained

by S-H,

S-H recognized that the numerical calculation with a

rectangular array of mesh points in the wave number space

converged very slowly for computing g3(v). This is true not

simply because of the odd shape of g3 (v) but because of the

fact that v3 is nearly independent of (p and T2 and the mesh

points run almost parallel with the surfaces of constant v.

Very little increase in accuracy results from taking a mesh

with more than one value of (TlP T2)' The accuracy depends

mainly upon the number of values of f3 that are used. S-H did

use a finer mesh for evaluating g3 (v) than for gl(v) but the

same difficulties also arise to a lesser extent in computing

the central portion of gl(v) for which the surfaces of constant

v are also nearily planos.
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This probably explains the apparent systematic error

between v - 0.2 and v 0.6. (The solid curve is accurate

to within a fraction of a percent in most of this region.) At

lower frequencies the surfaces of constant v are much less flat

and the statistical errors in the numerical scheme should be

much less for 0 < v < 0.2. The agreement is indeed very good

in this range.

6. The SpecificfHeat

The specific heat at constant volume is evaluated

from the equation

1d~vfv - T itT
C =3R dvI~~%T) 3R(T/Tm) dxg(xT/T,)f(x) (25)

0 0
in which v is still the relative frequency as used in the

previous sections, f(x) is the Einstein function

f(x) = x2eX(ex - l)-2 (26)

and
Tm = hvm/k ,  x =vTm/T

T is the temperature (analogous to the Debye temperature)

associated with the maximum frequency Vm, for which v = le

For low temperatures, T << Tmq only the low frequency

modes, v << 1, contribute appreciably to C. Since the function

f(x) decreases rapidly for x >> 1 the main contribution to

Eq. (25) comes from values of x of order 1 and
OD

C -3R(T/TM) j dx g(xT/T,)f(x) for T <Tm (25a)

0
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If for small values of V xT/Tm, g(v) should be pro-

portional to v for some value of t, i.e., g(v) = AV then

11 00

C - 3RA(T/Tm) +I  dx x f(x) 3RAP(- + 3) + 2)(T/Tm)

0 (27)

C(t + 2) is the Riemann zeta-function.

It is convenient to consider separately the contribution

to C from the branches g1 (v) g2(v) and g3 (v) by writing

C = (2Ci + C3)/3 (28)

for which C. is the contribution to C from the branch gl(v) and

C3 the contribution from g3(v)'

For V2 << y2/4x, gl(v) is proportional to V2 I Eq, (8),

and for v2 " y, g3(v) is also proportional to v2 9 Eq. (23).

In the range x of order one, v = xT/Tm << y/ VT if

T << Tm y/ vx and so we find that

1RR2 (T/Tm) 3  T3 for T<<T, //Vx« << T (29)
5y a + 4y)

and similarly
4R2 T/n)3 T

c3 M - (QC dT 3  for T << Tm V7 << Tm (30)
3 5y(p + y*

C as well as its two components individually is

proportional to T3 for sufficiently low T in agreement with the

familiar Debye T3-law except that, in the present case q the T3
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behavior extends over only a relatively very short range of T;

for a typical three dimensional system the T3 behavior is limited

only by T << Tm i.e., for temperatures small compared with the

Debye temperature.

From Eq. (9) we see that gl(v) is proportional to v/2

for y2/4x << v2 << y, If y/x is sufficiently small, the v3 / 2

dependence holds over almost the entire range v2 << y9 except

for a very small region near v = 0. CI represents an average

of contributions from all values of v = xT/Tm with x = 0(1).

If Tmy/VW << T << Troy , then g(v) 3/2 for most values

of v that contribute to C1 and we find that

315R(T/TM)5/2 (7/2) fo5/2 1 A~«~T '8 31 I12( + %)12li for Tmy/VIZ <<T<<Tm ~y

81R3/%l/2(c + 4y)1/2K(31)

5/2
The T dependence of the specific heat is not a con-

sequence of geometry and the v3/2 dependence was one of the

better approximations in the analysis if gl(v). At least a

trend in this direction should appear for any fibrous crystal.

If one should plot C1 vs. T on a log-log scale, the curve

should have a slope 3 at the lowest values of T and show a

range of T over which the curve is rather flat with a slope

of 5/2.

One does not, of course, measure C1 experimentally but

only C and in this range of T, we expect C3 to be proportional

to T3 still. The total specific heat would be a linear com-

bination of T3 and T5/2 and the log-log plot of C would have a
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slope intermediate between 3 and 5/2, nearer the 5/2, however,

.because at these temperatures C1 would be appreciably larger

than C3#

For this particular model, we would find also, by

quite similar arguments, a range of T for which

o +5R(T/Tm)3/ 2[ C(l/) ]2 (5/2) 12  r TC 1 167E. . ..........4 T6 f or Vy Tm << T<4/c Tm
(32)

due to the v1/2 dependence of gl(v) given in Eq. (12). This

behavior of gl(v) was a limiting form that did not show too

well for the force constants used here and furthermore it was

primarily a consequence of the rectangular geometry. The

specific hoat being an average of contributions from a wide

range of v, would not be expected to show this behavior even

as accurately as g1(v) showed the v
/2 dependence. The T3/2

represents only a trend peculiar to the geometry.

Also from Eq. (14) which gives gl(v) v-1/ 2 we obtain

9R(T/Tm) 1 / (3/2) 1/2
CI  2 5/27l/2x/4 cc T for v'a Tm << T << v (33)

This is expected to be only a rather crude approximation as

was Eq. (14) because it requires ydT 7a >> 1 This dependence

was not mainly a consequence of geometry, however and we can

expect this sort of temperature dependence to be approximately

true for any fibrous structure.

Returning to the behavior of C3 we see also from Eq.

(24) that
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C R43(T/T m )  T for 2 Y7 Tm << T << Tm (34)
3 2 tTTm

This behavior isnot mainly a consequence of geometry but of

the fact that the central forces in the chain are very Atrongs

In a crude sort of way, we can eliminate the effects

of the geometry by making y of the same order of magnitude as

a The features to be expected of any fibrous structure are

that

CI T3  for T<<Tm a/#V

C1 T 5 1 2  for Tm a/ v <<Tm << V Tm

CI  T1/ 2  for Tm a << T <Tm/ V x I
andan C3 T3  for T << VT m

C T for V T << T << Tm3 m

in which y = a represents a qualitative measure of the forces

betweon the chains,
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In Sec. 4, it has been shown that several new types

of singularities can arise in idealized situations in which

valence forces resisting the bending of bond angles are a

dominant influence on the spectrum. For the model considered

here, these arise from the term x(l - cos 3)2 which is approxi-

mately (x/4)q for 93 < < 1. Near any critical frequency on

the face (3 = 0, the dependence of v on the wave numbers was

described by an equation of the form of Eq. (20) 9 i.e.,

v2  v2 +a(q lc) 2 + ( p)2 + c( 3  (Al)lic T3 T2 +) (c

Various kinds of singularities arose in g(v) depending upon

whether a, b and c were zero, positive or negative.

Table II contains a list of all the various possibilities

with c # 0. If c = 0, Eq. (Al) reduces to a two dimensional

quadratic form giving singularities in g(v) of a type already

considered by van Hove. Of the 18 anomalous singularities

listod, many combine into equivalent pairs because the form of

Eq. (Al) is invariant to interchange of a and b along with an

interchange of dummy indices 1 and 2 on ql and T29 thus

a < 01 b > 0 is equivalent to a > 0, b < O. Furthermore if we

change the sign of a, b and c, this is equivalent to changing

V2 - V2 to v2 - V2 . The 18 cases can be grouped into pairs

differing only in that v > v. for one of the pairs is equivalent

to v < vc for the other. A minimum is paired with a maximum,

for example.
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Table II. All possible types of anomalous singularities are

classified according to whether a, b and c are positive (+),

negative (-) or zero (0). The fourth column indicates that the

singularity is a one, two or three dimensional form (ID, 2D or

3D) of a minimum (mn.), maximum, (max.) or saddle point (S.P.).

The fifth column indicates the approximate frequency at which

any of these types appear in Fig, 1 (see Sec .).

a b c type V2

0 0 + 1D min. 0

O 0 - D max.

0 + + }2Dm.0

+0 +

0 -2
2Dmax.

* -0

O + -
o2DSPI+ 0 -

0 - +
2D SPII

0 +

I+ + + 3D min. 0

... 3D max,

+ + - 3D SPI

+ 3D SPII a + 47

+ 3D SPIII
+ - + 2y

+ + .

+ 3D SPIV

4+
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Except for these differences due to interchange of (p

and T2 or reflections of the frequency about vc, there are

only six different kinds of singularities as grouped in Table

II, one one dimensional case, two two dimensional casesl and

three three dimensional cases. The present model conveniently

displays, at least approximatelyt an example of each of the

six types, always a case with c > 0 (it is hard to imagine how

c < 0 could ever arise in a practical problem except by accident)..

The model also shows all of the standard kinds of singularities

described by van Hove for three dimensional lattices and

approximately all the usual kinds of singularities for one and

two dimensional lattices as well.

Critical wave numbers and frequencies of anomalous

types are to be expected in quite general chain polymer crystals

in which the dominant forces resisting displacements perpen-

dicular to the chain result from the bending of bond angles.

This does not, however, exhaust all the possible kinds of

anomalous singularities of physical interest. A somewhat

similar situation arises in layer type crystals such as

graphite2 ". The forces resisting displacements perpendicular

to the crystal planes for the lamellar crystals seem to arise

also mainly from the bending of bond angles but now the fourth

power dependence of v2 on wave numbers is associated with two

of the three wave number components instead of just one as for

the chain polymer crystals.

Corresponding to Eq. (Al), we might obtain for the

lamellar crystals critical points for which
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V2  V2 + a(l -910 )4 + b(p1 - cic), + 2(3 - 3c) (A2)

Actually one is apt to obtain a more general form

vc + a(Q)cp + c(P3 - P3c)2  (A3)

in which Q and p are the polar representations of I "Io

and "

l - 'Plc -- cCos G, q2 " 2 c - 9 sin @.

a(@) is some continuous function of Q but not necessarily that

implied by Eq. (A2) and can correspond to any arbitrary

direction in the wave number space but in practical situations

would almost certainly be the wave number component for waves

traveling perpendicular to the crystal planes of the lamellar

structure,

There are not many new types of singularities arising

from Eqs. (A2) or (A3) that are of general interest. If either

a = 0 or b = 0 in Eq. (A2), the form of Eq. (A2) reduces to a

special case of Eq. (Al). No physical situation comes to mind

that would give negative values for a or b and, in fact, the

lamellar crystals are expected to lead to equations such as

Eq. (A3) with a(Q) positive definite, There are, howeverp

still three kinds of singularities that are certain to arise

in limiting cases of physically realistic situations, namely

a(G) > 0 and c > 0 (a three dimensional minimum), c < 0 (a

three dimensional saddle point) and c = 0 (a two dimensional

minimum). Examples of each of these appear in the spectrum of
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graphite proposed by Komatsu and Nagamiya7".

There finally is the possibility that v2 could be

proportional to the foui th power of the wave number components

in all three directions, i.e., v2 a homogeneous fourth degree

polynomial in the (9, - y ). It is difficult to imagine any

physical situation that would give rise to this, however.

We shall consider here only the nine physically inter-

esting cases mentioned above, the six in Table II and the three

special cases of Eq. (3A). Without loss of generality we may
assume the qi, p2 and are any three independent wave vector

components scaled in such a way that v2 is periodic in yll 92

and y3 with period 2R. The normalized distribution density of

v2 (for any individual branch of the spectrum) G(v2 ) is defined

by G(v2) = (2n) 3 
-dcldcp 2 d93  (AI)

dv JJ
integrated over the region

( 93) <  0 <

Even though the value of G(v2) does not, in most cases,

depend only upon the local behavior of v2 (91, 921 93) near

the singular properties of G(v2 ) in which we are

interested are a consequence of the local properties and we

may consider the various cases of Table II as if Eq. (Al) were

valid for all values of the Ij's. Either of two things may
happen as V-- v2. If G(v2)--co as 2 2 then the value

of G(v2) as v--4v, is dominated by the contributions from the

7/ !
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ineighborhood of the critical wave vector where Eq. (Al) is
2

accurate. If G(vc ) is finite, its value will, in most cases,

depend upon properties of v2  far away from the

critical wave vector where Eq. (Al) is not accurate. If,

however, we evaluate G(v2 ) - G(V2c) using the same approxima-

tionsq Eq. (Al), in evaluating each term, the contributions

far from the critical point nearly cancel and we can still

correctly determine the kind of singularity from the behavior

of G(v G(V2 ) even though we cannot find either G(v 2 ) or

G(v2 ) individually.
From Eq. (Al), we notice that v2 is locally an even

function of (T, - 9,d for J = 1, 2, and 3 so that the con-
tribution to G(v2 ) from the vicinity of the critical wave

vector is eight times that from the region (y3 - qcp) >O. If

we consider c > 0, which can be done with no loss of generality,

the range of t > 0 in Eq. (A)+) is

0 < t < c-[ - vc - a( -q 1 0 - b(92 - f2c )2:

and so

2 1 ,r3~J~2 2 2 ~c

- b(q2 - T2c 2-3/1 dqjd 2  (AS)

The limits of integration are automatically taken care

of by the requirement that the integrand be real, i.e., the

quantity in brackets must be positive and also

0 < T3  Jc < Ma, 3 = 1, 2, 3. (A6)

4
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Mj is some number of order 1. If a = 0 (v2 independent of Pi)

we must choose M1 = it and if b = 0 (v2 independent of 92) we

must take M= . Except for these cases, the actual value of

M is unimportant because Eqs. (Al) and (A5) are only approxi-

mations valid for Ijy - (pjc << 1. Any results that are

meaningful can not involve the values of Mj for this would

immediately imply that the results depended upon the behavior

of V2 (91 T2P T3) in a region where Eq. (Al) is incorrect.

The one dimensional result (a = 0, b = 0) follows

directly from Eq. (A5)

2 2

with 2( 2-~a ~~c

wit G c ) oo or v :>- V C

For the two dimensional cases (b = 0), we make the

substitution

x = Ia(y, - glc)2/(v2 - v2)il / 2  (A8)

and obtain the following limiting expressions. For a < 0

(2D min.),

G(v2) 0 for y 2 < V2 (A9a)

(V2 2-* 1

GO72 la *J' (1 -2 3/4

(,2 2)4 [r(l/,+)]2
8 f(1A for (A9b)

8n% I2ira I*c*
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Again G(v2)-- oo as v2-4 v2 . For a > 0 (2D SP)

Iv2 - v2I-[P(l/4))3
2

8 21alic* + C for v2 < V2

G(v2) - (AIO)iv2 _ 21irl' 2
-,,) +f or v2 > v2

in which C is some undetermined constant.

The three dimensional cases with a and b of the same

sign, (±), can be conveniently handled by a polar coordinate

substitution

Ial*(p1 - lc) = r cos 9, jbj(o 2 - 920c) r sin Q

which transforms Eq. (A5) into

G(v2) - lic* - rdr8n2labl~cij Cv2 V2 7 r2 /

- C

This gives immediately the results for a, b > 0 (3D min.)

0 for v2 < v2

(c

G(v2)- (All)1(V2 _-2)
c . for 12> v

and for a, b <0 (3D SPII)

0 for v2 < V2

G() G(V )mJ (A12)
-( , 22 " c for v2 > v2

4%2jaj~c*I
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Both Eqs. (All) and (A12) give verticle tangents on only one

side of V21

The remaining singularity, a > 0, b < 0 (3D, SPill)

gives 2. *
2 212IV Vc forv 2 < V2

G(2) G(v2) 23/27t2IabIi'c* (A32 1v221J0(A13)
. for v2 > v2

which has a (asymmetric) verticle tangent singularity on both

sides of v
2.

For the three interesting cases arising from Eq. (A3)9

we let %/2

A = F dQ[a(Q)pl/ 2  (A14)

0
and obtain the following expressions. For c = 0 (2D min.)

0 O for v2 < V2

G(v2 ) = { (A15)

A(v2 - 2)-1/2 for v2 > V

which has an infinite singularity. For c > 0 (3D min.)

o for v2 < v2

G(v2 ) = (A16)

1Ic I/2A for V2 > V2

a finite discontinuity. For c < 0 (3D SP)

G(v2 ) = C - R'l1cl "I / 2 A loglv 2 " - 2 (Al7)
v01 A7

another infinite singularity. C is again an undetermined

constant.
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Figure Captions

Fig. i. Three dimensional surfaces of constant frequency in

the wave number space (ql' p2 ' q3) for modes vibrating perpen-

dicular to the chains are shown for several small values of v.

For the smallest v, the surfaces are ellipses flat in the Ti

direction. Due to the valence forces, the surfaces become

elongated in the 92 direction for the larger values of v.

F . Three dimensional surfaces of constant frequency for

larger values of v are shown by their intersections with the

planos 91 ' 2 and q3 - 0 or n. Solid lines are intersections

with the faces 9= 7, broken lines with the faces q3  0O of

the cube, J = 1, 2 or 3. The surfaces are labeled with the

values of v2 . For small v2 , the surfaces are elliptical shaped

near the origin, see Fig. 1, become elongated in the 92 direc-

tion as v2 increases, become nearly cylindrical for2

2y < v <,a. For a + 4Y < v2 < 4x, the surfaces are nearly

planes perpendicular with the 93 axis. The largest v 2

4x + a + 2y, is at the point (R, 09 it).

E .&L.- gl(v)l the frequency distribution for modes vibrating

perpendicular to the chains, plotted for small values of vs

show the transition from g(v)e.v2 to g(v)acv 3/2 . Curve (1)

is proportional to v2 , Eq. (8); curve (2) is proportional to

V3/21 Eq. (9)9 and curve 3 is the accurate curve for g(v),

Eq. (10).
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Fig. 4. A plot of gl(v) for the complete range of vj Fig. 3j

is a magnified view of the small rectangle near the origin.

The solid curve shows an accurate curve of gl(v). The three

broken curves, proportional to V3/29 v1 /2 and v"1/ 2 represent

Eqs. (9), (12) and (14), respectively.

. g3 (v), the spectrum for modes vibrating parallel with

the chains, is plotted for the entire range of v with a

magnified view of the high frequency end shown by the insert.

The broken curves are proportional to v2 and vo = const,,

2/n, corresponding to Eqs. (23) and (24), respectively*

Fig.6 The complete frequency distribution for all modes,

g(v)t is shown by the solid curve. The step function curve

is the approximate curve computed by Stockmayer and Hecht

for the same system.
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